
Multi-Robot Ground Swarms Using Minimally Invasive Safety

Critical Controller Solved Using Dykstra’s Projection Algorithm

Hayato Kato
ECE236C - Optimization Methods for Large-Scale Systems

June 5, 2022

1 Introduction

One of the many hot topics in modern robotics research is the area of swarm robotics, where multiple units
need to work together with each other to accomplish a certain task. One common task of such application is
to ensure collision avoidance amongst the other robots in its proximity for safe operation. Borrmann and his
colleagues solved this problem by proposing a minimally invasive safety critical control of multi-agent ground
swarms [3]. This approach involved defining a control safety function and using that to obtain a centralized
safety barrier certificate that ensures that no two robots would come too close to each other. The certificate
is obtained by solving an optimization problem at each global time step which computes the optimal control
input for each agent which minimizes the penalty for approaching too close to a neighboring robot.

2 Optimization Model

The control safety function used to formulate this control problem as a safety critical quadratic program is
shown below:

uact = argmin
u∈Rm

1

2
||u− udes(x)||2

s.t. Lghi,j(x)u+ αi,jhi,j(x) ≥ 0,∀i, j ∈ 1, ..., N, i ̸= j (1)

where
ẋi = ui, xi ∈ R2, ui ∈ R2 (2)

hi,j(x) = ||xi − xj ||2 −DS (3)

Si,j = {x ∈ R2N |hi,j(x) ≥ 0} (4)

Here, xi represents the ith agent’s state, which consists of its position in the world frame. ui represents
the input velocity given to each agent, where udes is the desired velocity originally set to accomplish the
task at hand and uact is the actual command that gets sent to each agent after being filtered by the ”safety
filter”. h represents the safety function that dictates what is considered to be ”safe” in this system, and the
safe set S is derived directly from this safety function. α is used here to represent the derivative condition
that needs to be met by the safety function to ensure that the system never leaves the safety set, i.e. is
positive definite. This is a user parameter that can be adjusted to modify the behavior of the swarm which
dampens the collision avoidance response of each agent, thus can be treated as a predefined constant [1].

3 Convex Analysis

The cost function is a simple Euclidean norm, which is known to be convex. By observing the terms within
the constraints, it is seen that both the Lie derivative of the safety function and the safety function itself
is only dependent on the current state of the system, which would be known and act as a constant. This
is because this optimization program is computed for each time step, thus making the constraint merely a

1

collection of hyperspaces which overlap to create a convex set. It is determined that a modified version of the
proximal gradient method is probably ideal for solving this type of optimization program, since it consists
of a differentiable function that has constraints which would be dealt with using a collection of indicator
functions. Upon asking for advice from the TA, Dykstra’s projection algorithm was used to simplify the
projection computation onto the entire set by individually projecting the proposed control input onto each
halfspace [2].

4 Implementation

The CVX implementation of the problem was tested in order to act as a comparison against the proposed
technique using Dykstra’s projection algorithm. Here, the implementation itself was fairly straightforward,
with the problem being properly set up by defining the cost function and the multiple constraints using a
for loop, as shown below:

cvx_begin quiet sdp

variable u(2*Swarm.N,1);

minimize 0.5*power(2,norm(u - u_des,2));

subject to

for i = 1:Swarm.N

for j = 1:Swarm.N

if i ~= j

Swarm.Lgh(i,j)*u >= -Swarm.ALPHA * Swarm.h(i,j);

end

end

end

cvx_end

In contrast, the implementation for the Dykstra’s projection algorithm was done by following the prox-
imal gradient algorithm’s updates and slightly modifying the projection step by dividing it into multiple
projections onto multiple halfspaces, one at a time:

u = zeros(2*Swarm.N,1);

t = 1;

temp = u - t*(u-u_des);

for i = 1:Swarm.N

for j = 1:Swarm.N

if i ~= j

b = Swarm.ALPHA * Swarm.h(i,j);

a = -Swarm.Lgh(i,j);

% Projection iff the constraint is not met

if a*temp > b

temp = temp + (b-a*temp)*a’/(a*a’);

end

end

end

end

u = temp;

Here, the formula for the projection onto a halfspace was borrowed directly from the class slides on page
6.11 [4]. The original Dykstra’s algorithm usually requires these projections to be repeated over several
iterations for it to converge towards the solution of the original problem. However, this step is omitted
under the assumption that the approximate solution is good enough for this specific application, since this
tentative solution still satisfies all constraints given.

2

5 Results

Both algorithms were implemented within MATLAB, and the simulation results are shown below:

Figure 1: Desired Trajectory of Robot Swarm (Link to animated GIF: https://imgur.com/a/WEjvLcL)

Figure 2: Trajectory Generated by Minimally Invasive Safety Critical Controller Solved Using CVX (Link
to animated GIF: https://imgur.com/8w6Y2rM)

Figure 3: Trajectory Generated by Minimally Invasive Safety Critical Controller Solved Using Dykstra’s
Projection Algorithm (Link to animated GIF: https://imgur.com/a/qatkTPA)

The simulation consisted of 5 robots which were told to start in a ring formation and given the objective
to move towards the opposite side of the ring. Since the most naive way to accomplish this task is to move
straight across the field, each robot generates a ”desired” path that crosses over the middle of the field and
consequently intersects the other robot’s paths. If this theoretical path is taken, all 5 robots would collide
with each other at the middle, as depicted by the third frame of Figure 1.

Figure 2 shows the trajectory that the minimally invasive safety critical controller solved using CVX
derived. The red circle around the robots indicate the bounds that they wish to keep around itself to ensure
safety, thus depicts the region that the robot wants to prevent other robots from entering. As seen from
the second and third frame, each robot slows down before approaching the bounds of the other robots, and
proceeds to avoid collision by finding a detour path around them. This results in a synchronized clockwise
rotation about the middle and lets the robots reach their goal without any collisions. This simulation was
ran 5 times, and each iteration step took approximately 284.20 milliseconds to compute.

In contrast, Figure 3 shows the save minimally invasive safety critical controller, but this time solved using
the proposed Dykstra’s projection algorithm. Interestingly, it is observed that the generated trajectories are
slightly different from the one computed by CVX, and shows that the paths are non-symmetric, yet still
satisfies the constraints by ensuring that no robot breaches another robot’s safety region at all times. Most

3

importantly, this simulation was also ran 5 times, but each iteration step took approximately only 289.17
microseconds, which is an improvement of nearly 10000 times. This result shows that the proposed method
is indeed practical and useful for this application, since it is able to achieve the same result 10000 times
faster than the method relying on CVX.

6 Analysis and Conclusion

As seen from the two different trajectories generated by the CVX implementation and the Dykstra’s projec-
tion algorithm implementation, it was interesting to see that the two algorithms generated slightly different
paths compared to each other. This result is however expected due to Dykstra’s algorithm working off
of the assumption that the series of projections are generating a control input close enough to the actual
solution of the problem. The fact that the generated control input is merely an approximated solution to
the ”real” solution makes it so that it is in general less optimal than the solution obtained from solving
the entire optimization problem. The tradeoff for the inaccuracies is its computation speed, which in this
case seems to be justified due to the Dykstra’s projection algorithm implementation still achieving the goal
while maintaining safety. For obvious reasons, this system can easily be scaled up to show that the CVX
implementation quickly becomes impractical due to how much the complexity of the quadratic program
increases as compared to a few additional projection computations for the Dykstra”s projection algorithm.
This project clearly depicts the useful applications of the proximal gradient methods explored in class, albeit
slightly modified to accommodate the large number of constraints imposed between each combination of
robots.

7 References

1 Ames, Aaron D, and Paulo Tabuada. “Lectures on Nonlinear Dynamics and Control.” 10 Mar. 2022.

2 Bauschke, Heinz H, and Adrian S Lewis. “Dykstras Algorithm with Bregman Projections: A Conver-
gence Proof.” Optimization, vol. 48, no. 4, 2000, pp. 409–427., https://doi.org/10.1080/02331930008844513.

3 Borrmann, Urs, et al. “Control Barrier Certificates for Safe Swarm Behavior.” IFAC-PapersOnLine,
vol. 48, no. 27, 2015, pp. 68–73., https://doi.org/10.1016/j.ifacol.2015.11.154.

4 Vandenberghe, Lieven. “7. Accelerated Proximal Gradient Methods.” ECE236C (Spring 2022).

8 MATLAB Source Code

% main.m

% Runs the simulation

% Author - Hayato Kato

clear;

close all;

clc;

% Simulation Parameters

N = 5;

FieldWidth = 100;

FieldHeight = 100;

Distance = 10;

% Generate a ring of swarm robots trying to cross over to the other side

radius = 40;

4

a = 2*pi*[1:N]’/N;

x1 = [radius*cos(a)+FieldWidth/2,radius*sin(a)+FieldHeight/2];

a = a+pi*1.0;

x2 = [radius*cos(a)+FieldWidth/2,radius*sin(a)+FieldHeight/2];

swarm = Swarm(x1,x2,FieldWidth,FieldHeight,Distance);

% Define the figure used to plot the swarm trajectory

f = figure;

filename = ’swarmAnimation.gif’;

frameinterval = 0.001;

time = 1;

swarm.plot();

count = 0;

totalElapsedTime = 0;

% Run the simulation until the swarm reaches its goal position

while max(vecnorm(swarm.u_des’)) > 0.1

count = count + 1;

totalElapsedTime = totalElapsedTime + swarm.update_csf_cvx();

disp(totalElapsedTime/count);

swarm.plot();

drawnow;

% Save the plot as a gif animation

frame = getframe(f);

im = frame2im(frame);

[image,cmap] = rgb2ind(im,256);

if time == 1

imwrite(image,cmap,filename,’gif’,’LoopCount’,Inf,’DelayTime’,frameinterval);

else

imwrite(image,cmap,filename,’gif’,’WriteMode’,’append’,’DelayTime’,frameinterval);

end

time = time + 1;

end

% Swarm.m

% Swarm class definition, which handles all of the state updates using the

% two proposed algorithms and plotting

% Auther - Hayato Kato

classdef Swarm < handle

properties

fX

fY

distance

N

x

x_0

x_f

u_des

u_act

x_history

5

end

properties (Constant)

SPEED = 1;

ALPHA = 0.2;

end

methods

function obj = Swarm(startPos, endPos, fieldX, fieldY, dist)

if nargin > 0

obj.fX = fieldX;

obj.fY = fieldY;

obj.distance = dist;

obj.x_0 = startPos;

obj.x = startPos;

obj.x_f = endPos;

obj.N = length(startPos);

diff = obj.x_f - obj.x;

obj.u_des = min(Swarm.SPEED,norm(diff)) * normr(diff);

obj.u_act = obj.u_des;

obj.x_history = cat(3,[],obj.x);

end

end

% Directly generates control input off of desired control input,

% which results in a collision

function elapsedTime = update_collide(Swarm)

diff = Swarm.x_f - Swarm.x;

Swarm.u_des = min(norm(diff),Swarm.SPEED)*normr(diff);

Swarm.u_act = Swarm.u_des;

Swarm.x = Swarm.x + Swarm.u_act;

Swarm.x_history = cat(3,Swarm.x_history,Swarm.x);

elapsedTime = 0;

end

% Minimally Invasive Safety Critical Control using CVX

function elapsedTime = update_csf_cvx(Swarm)

diff = Swarm.x_f - Swarm.x;

Swarm.u_des = min(norm(diff),Swarm.SPEED)*normr(diff);

u_des = reshape(Swarm.u_des’,2*Swarm.N,1);

tic;

cvx_begin quiet

variable u(2*Swarm.N,1);

minimize 0.5*power(2,norm(u - u_des,2));

subject to

for i = 1:Swarm.N

for j = 1:Swarm.N

if i ~= j

Swarm.Lgh(i,j)*u >= -Swarm.ALPHA * Swarm.h(i,j);

end

end

end

cvx_end

6

elapsedTime = toc;

Swarm.u_act = reshape(u,2,Swarm.N)’;

Swarm.x = Swarm.x + Swarm.u_act;

Swarm.x_history = cat(3,Swarm.x_history,Swarm.x);

end

% Minimally Invasive Safety Critical Control using Dykstra’s

% Projection Algorithm

function elapsedTime = update_csf_Dykstra(Swarm)

diff = Swarm.x_f - Swarm.x;

Swarm.u_des = min(norm(diff),Swarm.SPEED)*normr(diff);

u_des = reshape(Swarm.u_des’,2*Swarm.N,1);

tic;

u = zeros(2*Swarm.N,1);

t = 1;

temp = u - t*(u-u_des);

for i = 1:Swarm.N

for j = 1:Swarm.N

if i ~= j

b = Swarm.ALPHA * Swarm.h(i,j);

a = -Swarm.Lgh(i,j);

% Projection iff the constraint is not met

if a*temp > b

temp = temp + (b-a*temp)*a’/(a*a’);

end

end

end

end

u = temp;

elapsedTime = toc;

Swarm.u_act = reshape(u,2,Swarm.N)’;

Swarm.x = Swarm.x + Swarm.u_act;

Swarm.x_history = cat(3,Swarm.x_history,Swarm.x);

end

function result = h(Swarm,i,j)

temp = Swarm.x(i,:)-Swarm.x(j,:);

result = temp*temp’-Swarm.distance^2;

end

function result = Lgh(Swarm,i,j)

Lgh = zeros(1,2*Swarm.N);

Lgh(2*i-1:2*i) = 2*(Swarm.x(i,:)-Swarm.x(j,:));

Lgh(2*j-1:2*j) = -2*(Swarm.x(i,:)-Swarm.x(j,:));

result = Lgh;

end

function plot(Swarm)

clf;

FieldWidth = Swarm.fX;

FieldHeight = Swarm.fY;

hold on;

swarmColor = [’r’,’g’,’b’,’k’,’m’];

7

for i=1:Swarm.N

arrow = 2*Swarm.u_act(i,:);

plot([Swarm.x_0(i,1),Swarm.x_f(i,1)], ...

[Swarm.x_0(i,2),Swarm.x_f(i,2)], ...

’o’,’Color’,swarmColor(i));

quiver(Swarm.x(i,1),Swarm.x(i,2),arrow(1),arrow(2),2, ...

’filled’,’MaxHeadSize’,5,’Color’,’k’,’LineWidth’,2);

viscircles(Swarm.x(i,:),Swarm.distance);

plot(reshape(Swarm.x_history(i,1,:),[],1), ...

reshape(Swarm.x_history(i,2,:),[],1), ...

’--’,’Color’,swarmColor(i));

end

scatter(Swarm.x(:,1),Swarm.x(:,2),200,’b’,’filled’);

axis equal;

xlim([-1,FieldWidth+1]);

ylim([-1,FieldHeight+1]);

grid on;

end

end

end

8

	Introduction
	Optimization Model
	Convex Analysis
	Implementation
	Results
	Analysis and Conclusion
	References
	MATLAB Source Code

