Single-Agent Path Planning within Dynamical
Environments with Large-Scale Obstacles

David Kao
Electrical and Computer Engineering
University of California, Los Angeles
Los Angeles, USA
davidkao41@ucla.edu

Abstract—Path planning is the task of computing a sequence
of states within an environment that lead from a starting state
to a given goal state, while abiding by the rules defined by
the use-case (no collisions, etc.). In a dynamic environment, one
has to pay attention to both fixed and moving obstacles when
solving this problem. To the best of our knowledge, most of the
existing methods used to solve the problem of path planning in a
dynamic environment provided with specific sensor information
do not address jointly the issues of computational efficiency
and path safety. In this project, we propose a method that is
computationally efficient and provides a safer path throughout
the trajectory. Our results show a reduction in total computation
time in comparison to naive path planning methods for specific
types of maps, and we conjecture a gain in safety induced by the
very nature of our method.

Index Terms—Path-planning, QuadTree Data Structure,
Breadth First Search (BFS), Perlin Noise

I. INTRODUCTION / LITERATURE

The place of robots in our lives has been growing since
the end of the 20™ century. For many real-world applications,
it is necessary for robots to have capability to navigate
autonomously in unknown and dynamic environments. This
problem combines speed, computational efficiency, and safety
and is an active area of research [1] [2] [3]. The first two issues
are core ones in the domain of path planning, while the safety
aspect stems from a need to plan a collision-free path. Most
path-planning algorithms deal with obstacles in a static con-
text, but don’t consider obstacles that potentially obstruct the
intended path. Additionally, the presence of moving obstacles
changes the nature of the “optimal path”.

Several methods have been proposed to handle the dynamic
path planning problem already. Fujimura and Samet [4] was
one of the earliest attempts on the problem. They employed
a quadtree decomposition method to minimize the 2D state
space environment. By taking advantage of the repeated
information in neighboring states, this method was able to
reduce the state space needed to search and thus complexity.
By planning the trajectory through these quadtree states, the
authors were also able to gain improvements in their search
strategy through a system of control points anchored onto the
combined states.

Fraichard and Laugier [5] made adaptations to the now-
popular method of path-velocity decomposition. The main

Hayato Kato
Electrical and Computer Engineering
University of California, Los Angeles
Los Angeles, USA
hayatokato@ucla.edu

Yskandar Gas
Electrical and Computer Engineering
University of California, Los Angeles
Los Angeles, USA
yskandargas @ucla.edu

strategy of this method is that it separates the dynamic problem
into two sections: it finds a path that is derived from the static
environment, and it identifies the trajectory velocity based on
the dynamics of the obstacles. When obstacles stop on the
path, the agent does not deviate from the planned static path
and will simply wait until the obstacle leaves. Fraichard and
Laugier’s innovation was to plan adjacent trajectories as well,
to provide the agent other options in case of blockage.

Both of the aforementioned strategies do avoid collisions
with obstacles, but they focus on optimizing computational
efficiency and speed. However, in an actual autonomous robot,
it is reasonable to expect more than just "not colliding” - a real
robot might want to stay far away from obstacles, or deal with
obstacles that move unexpectedly. Therefore, we also looked
into path-planning algorithms that prioritized safety.

Phillips and Likhachev [6] found a way to use predictive
dynamics to judge the future states of obstacles, and included
time in their state space. This allowed them to utilize the
predicted obstacle states to generate a trajectory that avoided
states that coincided with ”collision intervals” where the
obstacle was in the way of the intended path. Because they
were able to calculate in terms of safe time intervals instead
of safe spaces, they could reduce their computation time while
also maintaining a safe distance from each obstacle, bolstered
by every observation.

Meanwhile, Zhong et al. [7] adapted the A* algorithm to
include the proximity to obstacles in the algorithm heuristic.
This allowed them to optimize their path according to both
risk and distance. This method allows the robot to get closer
to an obstacle when necessary, while still biasing it towards
more open, safe paths. The path generated by this algorithm
is then used on a local level to cope with dynamic obstacles.

Of the algorithms that were reviewed, we felt that none
of them satisfied a balance of prioritizing safety while still
maintaining fast computation speed and a reasonable real-
time travel time. In this paper, we propose a new method of
dynamic path planning that attempts to balance all three of
safety, speed, and efficiency.

II. PROBLEM STATEMENT
A. Overview

The overall objective is to control a 2D holonomic robot that
exists in a discrete space/time environment, which generates a
path from the robot’s initial state to the desired final state, all
while avoiding collisions with other obstacles. It is assumed
the environment is populated with dynamic obstacles that
have the same gridworld-like dynamics followed by the robot,
alongside static obstacles which are much larger in scale
relative to itself. Such problems are conventionally difficult to
solve due to the curse of dimensionality and the unpredictabil-
ity of the randomly-moving obstacles. This approach hopes to
find a method that can generate a safe yet feasible path, all
while having reduced computational complexity to make the
system scalable over systems with a larger state space / more
dimensions.

B. Assumptions

To define the problem we are trying to solve and give
the corresponding mathematical formulation, we first list the
different assumptions we make regarding the problem at hand.

e The environment we operate in is a GridWorld-like 2D
discrete time/space environment.

o The robot is holonomic, and its dynamics are determin-
istic.

« The state of the robot is fully observable.

« The environment contains fixed obstacles, whose posi-
tions are known to us.

o The environment contains moving obstacles, whose po-
sitions and dynamics are unknown to us.

o The robot is equipped with a sensor that captures in-
formation about its surroundings under the form of an
occupancy grid centered on the robot.

« The moving obstacles are aware of the position of the
robot, and will not collide with it if it is at a stop.

C. Mathematical Formulation

We identified our system as a Markov Decision Process
(MDP) and defined the appropriate notations:

« State Space :
S ={(,y)lz.y € 0,10} 22 (1)
e Action Space :
A={(0,1),(0,-1),(~1,0),(1,0),(0,0)} € Z* (2)
o Observation Space :
G = [0, 3)
« Fixed Obstacle Space :
ocs “4)

e Let f: &S x.A — & be the function describing the
dynamics of our robot.

e Let N € N be the number of iterations : Moving
Obstacle Space at iteration ¢ € [0,n — 1] : M; C S

o Task : Compute a sequence of states (trajectory) T =
{80,81,...,Sn-1} with Sy the initial state of the robot
and Sy_1 the goal state, such that V i € [0, N — 2],
Ja € A such that f(S;,a) = S;1+1 and S; ¢ M;.

D. Approach

To overcome the difficulties of dealing with both dynamic
and static obstacles in the environment, we approached this
problem by subdividing it into two subproblems:

o Global Path Planning
e Local Path Planning

We decided on this approach after discussing strategies
to avoid being boxed in by large-scale obstacles that could
seriously limit movement options around them, while also
avoiding dynamic obstacles and not recalculating our entire
path or stopping once obstacles appear. Similar to other
methods in the literature such as path-velocity decomposition,
we felt that dividing this problem would lend us greatest
flexibility in the tools we used to tackle this problem. Due
to the random dynamics of our obstacles, we were not able
to utilize techniques such as predictive dynamics or including
time as a dimension to the state space, as we are unable to
predict future states.

Our global path planning lends high-level direction to our
robot. In cases with large-scale obstacles, it may be more
advantageous to move in a certain direction that is not im-
mediately obvious in an agent’s local observation region.

As a simple hypothetical, consider an environment where a
robot is encircled by a large, static obstacle where the only
outlet is in the opposite direction of the goal. Without high
level planning, the robot would first naively move towards
the goal, only to retrace its steps all the way back to where
it started as it keeps encountering obstacles while it tries to
go around. In this scenario, a high-level planning stage that
considers a map of all the static obstacles would have been
helpful. The planned trajectory would have considered the
strange shape of the obstacle and immediately sent the robot
towards the intermediate outlet instead of the blocked goal.

Our local path planning lends low-level flexibility to our
robot. In cases with moving obstacles, our robot actively
avoids obstacles in its path by performing a graph-based
search, using its observations and its next waypoint on the
global path to guide its movements on the lowest level. At each
step, it tries to move towards the next state on the quadtree
decomposition while moving around obstacles.

III. GLOBAL PATH PLANNING
A. QuadTree Decomposition Algorithm

To enable global path planning across a finite discrete
state space, we needed to come up with a strategic method
of reducing the total number of states that were required
to represent the system. For this, we took direct inspiration
from quadtree decomposition methods, a common technique
used for image data compression. Here, we focused on the
empty states traversable by the robot agent and used quadtree
decomposition to “merge” adjacent empty states. Merging

adjacent states into larger states or cells allows the system to
represent a same region of space which originally consisted of
smaller empty states as a single state with double the original
size. Repetition of this process across the entire field lets large
regions of empty space get replaced with fewer cells which
still encode the same information about the environment, as
shown in the transformation from Figure la to Figure 1b.

|

(a) Original State Space

(b) Decomposed State Space

=

A/ 1

=

(c) Directed Graph (Depth=1)

mit
L

(d) Global Path using BFS

Fig. 1: QuadTree Decomposition Path Planning Algorithm

Once the quadtree is populated with all of the static obsta-
cles from the enviornment, the valid nodes which represent a
decomposed state are extracted to form the new state space.
Adjacent nodes used to generate the graph are found here by
following a two-step procedure for all four cardinal directions:

1) Check to see if there exists an adjacent node with equal
or greater size

2) If an adjacent node exists, search inside that node to see
if any smaller-sized nodes are adjacent

Repeating this process for the all states within the new state
space and saving all adjacent nodes into a hashmap generates
a directed graph that can be used to run a graph-based search
method to find a path, as shown from Figure Ic and Figure
1d. Here, it is noted that the center point of each node is used
as the waypoint that the robot uses as reference to refer to this
particular node, and a generic BFS method is used to find a
path connecting the top-left corner of the environment to the
bottom-right corner.

B. Generated Path Feasibility Analysis

To ensure that the generated global path is feasible for the
robot agent to follow, a case study is done to make sure all

connections generate a path that ensures traversal of the field
as long as the robot does not deviate far from this path. When
examining all of the different types of connections that could
be made between two decomposed nodes, they can all be
classified into three cases as shown in Figure 2:

_— o~

t [~

(a) Same Size (b) Small to Large (c) Large to Small

Fig. 2: All Transitions from One Decomposed State to Another

Out of these three cases, both (b) and (c) can be consolidated
to a single case thanks to the assumption that the robot agent
is holonomic and differ only in the direction of the transition,
which should not affect the feasibility of a particular path.

o For case (a), the closest distance to the region outside
of these two nodes is dependent on the scale of the
decomposed states, thus is constant throughout the entire
trajectory in between the two waypoints and never leaves
the region defined by the two decomposed states.

o For case (b) and (c), the corner in between the transition
comes close to the path, especially for transitions with
large size differences. However, regardless of the scale
of the final decomposed state, the waypoint always lies
somewhere along the green diagonal dotted line shown in
Figure 3, and never exists within the orange region which
is inaccessible from the starting waypoint located at the
center of the initial decomposed state.

Fig. 3: Assured Line of Sight Between Adjacent Waypoints

To minimize the chances of the robot agent colliding into
static obstacles when being pushed off track due to the
dynamic obstacles, it is desirable to generate a path that
remains within the decomposed states which are known to be
free of obstacles. This means maximizing the perpendicular
distance to each edge of the decomposed states, which looks
like the generated trajectories shown in Figure 4.

AR

(b) Large to Small

"

(a) Small to Large

Fig. 4: Ideal Trajectory to Maximize Distance to State Edge

However for our current implementation, we did not go
as far as maximizing safety due to implementation technical
difficulties and time constraints. Future works would focus
on implementation of bent trajectories as shown in the figure
above, but for now the scope of the project focused on
generating feasible paths with limited safety margins. As a
result, we do recognize there may be edge cases with our
current system where a dynamic obstacle might push the agent
far off track enough to make it leave the node and lose assured
safety.

C. Analysis of Trajectory Generated by Breadth First Search

Out of several graph-based search methods we experimented
with during the development of our algorithm, we discovered a
consequence of using BFS on the newly generated state space.
Because the different nodes in the state space could have
different scales relative to its adjacent nodes, the edges that
connect the different vertices in a graph has varying lengths,
which the BFS algorithm does not take into account. Hence,
the path generated using BFS always prioritizes paths with the
least number of state transitions rather than the path with the
shortest Euclidean distance, as shown in Figure 5.

-
{

l

(b) Path w/ Least State Transition

(a) Path w/ Shortest Edge

Fig. 5: Consequence of BFS on QuadTree Decomposed States

This consequently means the path generated by BFS tends to
select paths that goes through states with larger nodes, since
they are usually able to traverse more distance towards the
goal state within fewer transitions. Paths with larger nodes are
equivalent to selecting paths that have a larger margin of error
to the closest obstacle, hence a “safer” trajectory that leaves
more space to let the local path planning to avoid dynamical
obstacles. Such phenomenon ended up acting in our favor
of solving the dual-layered path planning, so we ended up
choosing BFS over other graph-based search methods.

D. QuadTree Decomposition Performance Evaluation

To evaluate the effectiveness of the QuadTree Decompo-
sition algorithm, we required a way to run the algorithm
across various world maps. Manually generating a bunch of
random world map data would have been time-consuming and
inefficient, hence we utilized Perlin noise binary thresholding
to automatically generate them. Here, two parameters were
adjusted to create maps with different properties: threshold

value and octave value. The threshold value determines the
color of the Perlin noise at which the script detects it as an
obstacle, with a higher threshold being equivalent to having
more empty space. On the other hand, octave value determines
the scale of the Perlin noise map which is analogous to the
frequency of the noise. A higher octave value indicates smaller
features, both of which are shown in the 25 examples in Figure
6. Here, each row has a different octave value that increases
as you go down the rows, and each column has a different
threshold value that decreases as you go across the columns
to the right. This script autonomously generated 1000 random
maps which were used to evaluate the performance of the
algorithm from a computational complexity perspective across
multiple experiments shown below:

L

E

h e 4

% T
) b o
SRR

PRall 18 AT LY
SRV RN X
A ,',";_'

-‘
L
Ao
=
n -
e e
r¥

. B
Fig. 6: Random Ma

]

r

Data Using Perlin Noise Thresholding

o

1) Vertex and Edge Count Reduction: An immediate re-
sult that we find after running the QuadTree decomposition
algorithm across 1000 randomly generated maps show that
there is a drastic decrease in both vertex and edge count that
gets stronger when applying a deeper decomposition level,
as shown in Figure 7. Just focusing on the lowest level of
decomposition, we can see a reduction of approximately 75%
in vertex count and approximately 85% in edge count for a
32x32 grid. It is known that the worst case computational
complexity of a conventional BFS algorithm is O(|V| + | E|),
where V' and I are the magnitude of the vertex and edge sets
that make up the graph. Hence, a reduction in both of these
quantities ensures some computational complexity reduction
excluding the time required to generate the QuadTree data
structure.

(a) Vertex Count Reduction (b) Edge Count Reduction

Fig. 7: Vertex and Edge Count Reduction After Decomposition

2) Vertex and Edge Reduction Rate versus Percentage of
Empty States: Another result we find is when we compare
the ratio of empty states in a given map versus the reduction
rate it had on the map using the lowest level of decomposition.
As shown in Figure 8, there is not much overall reduction in
both vertex and edge count when looking at maps with lower
percentages of empty states. This observation is expected,
since the QuadTree decomposition algorithm fundamentally
only acts on the empty states, thus there is little to no reduction
expected when there is nothing to reduce. In contrast, the
other end of the plot shows a wide range of reduction rates,
with the best ones reaching all the way up to nearly 80%
reductions and having a minimum of 30% for vertices and
20% for edges. This behavior is also expected, since whether
or not a reduction is successful heavily depends on the actual
distribution of static obstacles. The algorithm works the best
if all of the obstacles are isolated into its own region and
suffers when smaller obstacles are spread across the entire
field. Considering that our problem has to do with large-scale
environments which are expected to have large regions of
empty space, these results prove that our algorithm is suited
for solving our specific problem.

100 100

%)

Vertex Count Reduction Rate
Edge Count Reduction Rate (%

20

0 20 10 0 50 100 0 20 10 0 50 100
Empty State Occupancy Percentage (%) Empty State Occupancy Percentage (%)

(a) Vertex Reduction Rate (b) Edge Reduction Rate

Fig. 8: Algorithm Performance Dependent on Map Population

3) Vertex and Edge Reduction Rate versus Obstacle Scale:
The final result we obtain from analyzing the preliminary
experiments show a relationship between the reduction rate
and the selected octave value used to generate the maps,
which in this context determines the scale of the obstacles. A
smaller octave value means a lower noise frequency, which
is equivalent to generating larger clumps of obstacles and
larger clumps of empty space. Hence, we can observe a better
reduction rate across all 3 thresholds towards the left side
of both plots in Figure 9 since the algorithm is able to take
advantage of these large empty regions and merges them into
fewer nodes.

IV. LoCAL PATH PLANNING

A. General Approach

The global path obtained using the QuadTree decomposition
method allows for the avoidance of the large fixed obstacles
and provides us with a general path to follow. To handle the
moving obstacles, we rely on the robot’s sensor, which gives

100 100
—— Threshold = 0.3

Threshold = 0.5
—— Threshold = 0.7

—— Threshold = 0.3
Threshold = 0.5
—— Threshold = 0.7

804"

%)

Vertex Count Reduction Rate (%)

Edge Count Reduction Rate (!

20

8 10 12 14
Perlin Noise Octave Level (Frequency)

6 12 1 6

s 2
Perlin Noise Octave Level (Frequency)

(a) Vertex Reduction Rate (b) Edge Reduction Rate

Fig. 9: Algorithm Performance Dependent on Obstacle Size

us information about the robot’s surroundings under the form
of an occupancy grid centered on the robot, whose range
is a chosen parameter. Thanks to this new information, we
have full knowledge of the positions of the obstacles in our
surroundings at the current time, which allows us to handle the
task of dynamic obstacles avoidance. Our approach consists
in building an intermediate environment from the current
sensor measurement, projecting the next state in the global
QuadTree path to the intermediate environment and solving
the intermediate path planning problem using a graph search
based method.

B. Building the Local Graph

The current intermediate environment (see figure below)
has a specific state space regrouping all the states inside the
observation area (in green on Figure 10), and an obstacle
space (in red on Figure 10) regrouping all the states occupied
by obstacles (see II.B/Mathematical Formulation). Given the
current intermediate environment, we build a graph to solve
the local path planning problem. In this graph, the nodes are
all the states contained in this local environment, and the edges
are the actions that the robot needs to take to go from one node
to the next one. Since the dynamics of the dynamic obstacles
are unknown, we cannot predict which states such obstacles
will be occupying at the next time-step. Thus, when building
our graph, we omit the states that are occupied by obstacles,
as well as the states adjacent to them, so as to avoid collision
at the next time-step.

C. Solving the Path Planning Problem

Once that graph is built, we project the next state in the
global path into our graph, simply by picking the node closest
to the next global path state (in purple on Figure 10) in
euclidean distance as our intermediate goal (in blue on Figure
10). Note that since we project to a node in the graph, we
know that the obtained goal node corresponds to a state that
is not occupied by an obstacle nor is adjacent to one. Since
our graph now holds all the information we need to solve our
local problem, we use Breadth-First-Search to look for the
shortest path between the node occupied by the robot and the
goal node. If such path does not exist (because obstacles are

along the way), we simply stand still until the next iteration,
assuming that the obstacle will eventually move (since it is a
dynamic obstacle).

. ._ Projection
2_) .
4
6_
8_
0 2 4 6 8

Fig. 10: Overview of the local environment

V. TESTING METHODS

To test and validate our algorithm, we created a test
framework which tracked the locations of the agent and
obstacles, and reported if any collisions or illegal moves were
detected. Our tests relied on a variety of maps generated
using our Perlin noise generator, as well as example maps for
demonstration. With our map generator, we were able to sweep
through a variety of noise thresholds and map dimensions,
as well as pick random start states for our obstacles. With
a randomly generated start and end state for our agent, we
could be confident that our algorithm could readily adapt to
any environment configuration. Each time step of simulation
consisted of two main actions:

1) Framework moves agent in selected direction, and picks
random valid moves for each obstacle. After moving
all elements in the environment, it reports the agent’s
observation field to the agent.

2) The agent uses the observation and performs local path
planning. It reports its next move to the framework.

VI. COMBINED RESULTS

Comparisons with a naive graph search method (Figure 11
and 12) applied over the entire state space show a cutoff
point where the quadtree method achieves faster computation
time. We generated square environments between 16-128
pixels wide using our Perlin noise generator. In terms of
environments, the naive method starts to perform worse when
the map is between 50-55% empty space. The naive method
continues to suffer with more and more empty space, as there
are more valid states to search through. The quadtree method

avoids this curse of dimensionality as the computation time
stays relatively consistent, even dipping slightly, despite the
state space increasing.

Additionally, in our tests we chose random start and goal
points, which sometimes led to short paths that resulted in
best-case scenarios for the naive method. However, when
compared to worst-case scenarios of environment, start, and
goal configurations, our strategy of generating a quadtree
first consistently beat out the naive method. This shows that
the computation time for a naive method can have much
higher variance, but our method incurs an overhead penalty of
generating a quadtree to obtain much more consistent timings
over a range of map dimensions and thresholds. Our algorithm
is able to outperform as long as the distance of the path
between the start and goal position are far away enough to
validate this overhead cost.

10t

100 VIRV R $. 4

X
X XXX 5 Xy X RS o
o el u,xxxx X x& x»(x x| x X o000
)é ¢
o
% * MM e % Path Finding Time on Original State Space
Path Finding Time + QuadTree Generation Time

% QuadTree Generation Time

Time to Generate A Valid Path (seconds)

20 0 60 80 100 120
World Map Dimensions (pixels)

Fig. 11: Feasible Path Computation Time Across Different
Map Dimensions

Ce .

Path Finding Time on Original State Space

Time to Generate A Valid Path (seconds)

1073 ‘i.‘;\ Path Finding Time + QuadTree Generation Time
Y
e, ..r"Q' Py

A 17-'-': * . == Moving Average of Original State Space
° Moving Average of Quad Decomposed State Space

0.10 0.15 0.50 0.55 0.60 0.65 0.70
World Map Dimension (pixels)

Fig. 12: Feasible Path Computation Time Across Different
Map Dimensions

Figure 13 demonstrates our method in action. Our agent
starts in the top left corner at time step 1, and our system
generates a series of waypoints in blue dots. The agent
attempts to reach each waypoint in order, while avoiding the
red moving obstacles that appear in its observation range, the
light green field around the agent. The light blue trail shows the
complete path our agent takes. The deviations from the path
demonstrate how our agent tries to navigate around moving
obstacles to eliminate any chance of collision.

(a) Environment with Obstacles

time = 595

100

T T
100 120

(b) Trajectory Followed by Robot

Fig. 13: Robot Agent Path Generated using QuadTree Decomposition and Local Path Planning

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a new method to approach the
dynamic path-planning problem. We first generate a high-
level global path consisting of various waypoints to navigate
around static obstacles. Consequently, we used our waypoints
to make low-level movements while avoiding obstacles. We
demonstrate that our method has significant computational
savings on environments that have high amounts of empty
space, making it a suitable method in environments with few
obstacles or large chunks of empty space in between static
obstacles. This is due in part to the reduction of search
space that is created using the quadtree decomposition. We
demonstrate that our method is complete and effective, and
satisfies all our objectives of safety, by eliminating obstacle
collisions, computational efficiency, by reducing the graph
space, and speed, by following our waypoints to ensure our
intermediate goals do not waste time exploring dead ends.
We do incur a fixed overhead penalty to generate a quadtree
before planning. However, the consistency in computation time
for our method, in particular, could be useful from a systems
design perspective where having a known computation time
for each stage would be valued, or in situations where high
variance and worst-case timing scenarios are undesirable or
catastrophic.

Our paper focused on a discrete space environment. How-
ever, to apply our findings to real-world applications, we
need to extend our method to consider continuous space.
This includes removing the holonomic assumption, as well as
introducing boundaries on the physical limits of the agent, e.g.
velocity, centrifugal force, and turn radius. We would also need

to adapt our local planning algorithm to continuous space.
This would include considering a continuous risk distribution
to each obstacle, and perhaps using a risk-based heuristic to
weight proximity to obstacles. This idea lends itself well to
barrier functions, which enable controllers to steer systems
away from high-risk areas such as obstacles.

Additionally, we may also consider non-deterministic as-
pects of the system - for example, our obstacles already exhibit
random motion, but if our robot or observations also included
noise, that may affect the effectiveness of our method as well,
and further analysis would be needed to mitigate the impact
of noise.

We have established a strong foundation for these exten-
sions. Our strategy and problem formulation can be adapted
to consider a continuous space instead, where we will only
improve our gains through the further resolution we can
achieve for both our global and local path planning algo-
rithms. Finally, our modular approach to this problem can be
adapted and applied to other systems that could benefit, such
as applications targeting autonomous robots in environments
with large-scale obstacles and large areas of empty space.
Separating this problem into two subproblems gives us the
ability to substitute different methods of solving each one.
For example, we could compare our breadth-first search to
Dijkstra’s algorithm or A* to solve local path-planning, and
compare which one yields the safest path in the fastest time.

ACKNOWLEDGMENT

We thank Professor Ankur Mehta and Yusuke Tanaka for
providing constructive and critical feedback on our project.

[1]

[2]
[3]

REFERENCES

Kant, Kamal, and Steven W. Zucker. "Toward efficient trajectory plan-
ning: The path-velocity decomposition.” The international journal of
robotics research 5.3 (1986): 72-89.

Erdmann, Michael, and Tomas Lozano-Perez. ”On multiple moving
objects.” Algorithmica 2.1 (1987): 477-521.

Ganeshmurthy, M. S., and G. R. Suresh. ”Path planning algorithm
for autonomous mobile robot in dynamic environment.” 2015 3rd
International Conference on Signal Processing, Communication and
Networking (ICSCN). IEEE, 2015.

Fujimura, Kikuo, and Hanan Samet. ”A hierarchical strategy for path
planning among moving obstacles (mobile robot).” IEEE transactions on
robotics and Automation 5.1 (1989): 61-69.

Fraichard, Thierry, and Christian Laugier. "Dynamic trajectory planning,
path-velocity decomposition and adjacent paths.” IJCAL 1993.
Phillips, Mike, and Maxim Likhachev. ”Sipp: Safe interval path planning
for dynamic environments.” 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011.

Zhong, Xunyu, et al. "Hybrid path planning based on safe A* algorithm
and adaptive window approach for mobile robot in large-scale dynamic
environment.” Journal of Intelligent Robotic Systems 99.1 (2020): 65-
71.

